RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2020, том 29, выпуск 2, страницы 147–160 (Mi adm748)

Эта публикация цитируется в 1 статье

RESEARCH ARTICLE

Computing bounds for the general sum-connectivity index of some graph operations

Sh. Akhter, R. Farooq

School of Natural Sciences, National University of Sciences and Technology, H-12 Islamabad, Pakistan

Аннотация: Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$. Denote by $d_{G}(u)$ the degree of a vertex $u\in V(G)$. The general sum-connectivity index of $G$ is defined as $\chi_{\alpha}(G)=\sum_{u_{1}u_2\in E(G)}(d_{G}(u_1)+d_{G}(u_2))^{\alpha}$, where $\alpha$ is a real number. In this paper, we compute the bounds for general sum-connectivity index of several graph operations. These operations include corona product, cartesian product, strong product, composition, join, disjunction and symmetric difference of graphs. We apply the obtained results to find the bounds for the general sum-connectivity index of some graphs of general interest.

Ключевые слова: general sum-connectivity index, Randić index, corona product, strong product, symmetric difference.

MSC: 05C76, 05C07

Поступила в редакцию: 15.08.2016

Язык публикации: английский

DOI: 10.12958/adm281



Реферативные базы данных:


© МИАН, 2024