RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2020, том 29, выпуск 2, страницы 195–210 (Mi adm752)

RESEARCH ARTICLE

The containment poset of type $A$ Hessenberg varieties

E. Drellich

Department of Mathematics and Statistics, Swarthmore College, 500 College Ave, Swarthmore, PA 19081

Аннотация: Flag varieties are well-known algebraic varieties with many important geometric, combinatorial, and representation theoretic properties. A Hessenberg variety is a subvariety of a flag variety identified by two parameters: an element $X$ of the Lie algebra $\mathfrak{g}$ and a Hessenberg subspace $H\subseteq \mathfrak{g}$. This paper considers when two Hessenberg spaces define the same Hessenberg variety when paired with $X$. To answer this question we present the containment poset $\mathcal{P}_X$ of type $A$ Hessenberg varieties with a fixed first parameter $X$ and give a simple and elegant proof that if $X$ is not a multiple of the element $\mathbf 1$ then the Hessenberg spaces containing the Borel subalgebra determine distinct Hessenberg varieties. Lastly we give a natural involution on $\mathcal{P}_X$ that induces a homeomorphism of varieties and prove additional properties of $\mathcal{P}_X$ when $X$ is a regular nilpotent element.

Ключевые слова: Hessenberg variety, root space, poset.

MSC: 14A25, 17B45, 05E99

Поступила в редакцию: 17.07.2018
Исправленный вариант: 02.09.2018

Язык публикации: английский

DOI: 10.12958/adm1216



Реферативные базы данных:


© МИАН, 2024