Аннотация:
We proved the equidistribution of the Gaussian integer numbers in narrow sectors of the circle of radius $x^{\frac{1}{2}}$, $x\to\infty$, with the norms belonging to arithmetic progression $N(\alpha)\equiv\ell\pmod{q}$ with the common difference of an arithmetic progression $q$, $q\ll{x}^{\frac{2}{3}-\varepsilon}$.