Эта публикация цитируется в
1 статье
RESEARCH ARTICLE
On the lattice of weak topologies on the bicyclic monoid with adjoined zero
S. Bardylaa,
O. Gutikb a Institute of Mathematics, Kurt Gödel Research Center, Vienna, Austria
b Department of Mechanics and Mathematics, National University of Lviv, Universytetska 1, Lviv, 79000, Ukraine
Аннотация:
A Hausdorff topology
$\tau$ on the bicyclic monoid with adjoined zero
$\mathcal{C}^0$ is called
weak if it is contained in the coarsest inverse semigroup topology on
$\mathcal{C}^0$. We show that the lattice
$\mathcal{W}$ of all weak shift-continuous topologies on
$\mathcal{C}^0$ is isomorphic to the lattice
$\mathcal{SIF}^1\times\mathcal{SIF}^1$ where
$\mathcal{SIF}^1$ is the set of all shift-invariant filters on
$\omega$ with an attached element
$1$ endowed with the following partial order:
$\mathcal{F}\leq \mathcal{G}$ if and only if
$\mathcal{G}=1$ or
$\mathcal{F}\subset \mathcal{G}$. Also, we investigate cardinal characteristics of the lattice
$\mathcal{W}$. In particular, we prove that
$\mathcal{W}$ contains an antichain of cardinality
$2^{\mathfrak{c}}$ and a well-ordered chain of cardinality
$\mathfrak{c}$. Moreover, there exists a well-ordered chain of first-countable weak topologies of order type
$\mathfrak{t}$.
Ключевые слова:
lattice of topologies, bicyclic monoid, shift-continuous topology.
MSC: 22A15,
06B23 Поступила в редакцию: 17.09.2019
Исправленный вариант: 26.11.2019
Язык публикации: английский
DOI:
10.12958/adm1459