RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2021, том 31, выпуск 2, страницы 219–226 (Mi adm797)

RESEARCH ARTICLE

On (co)pure Baer injective modules

M. F. Hamid

Department of Production Engineering and Metallurgy, University of Technology, Baghdad, Iraq

Аннотация: For a given class of $R$-modules $\mathcal{Q}$, a module $M$ is called $\mathcal{Q}$-copure Baer injective if any map from a $\mathcal{Q}$-copure left ideal of $R$ into $M$ can be extended to a map from $R$ into $M$. Depending on the class $\mathcal{Q}$, this concept is both a dualization and a generalization of pure Baer injectivity. We show that every module can be embedded as $\mathcal{Q}$-copure submodule of a $\mathcal{Q}$-copure Baer injective module. Certain types of rings are characterized using properties of $\mathcal{Q}$-copure Baer injective modules. For example a ring $R$ is $\mathcal{Q}$-coregular if and only if every $\mathcal{Q}$-copure Baer injective $R$-module is injective.

Ключевые слова: $\mathcal{Q}$-copure submodule, $\mathcal{Q}$-copure Baer injective module, pure Baer injective module.

MSC: 16D50

Поступила в редакцию: 30.06.2018

Язык публикации: английский

DOI: 10.12958/adm1209



© МИАН, 2024