RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2021, том 31, выпуск 2, страницы 251–260 (Mi adm799)

Эта публикация цитируется в 1 статье

RESEARCH ARTICLE

Clean coalgebras and clean comodules of finitely generated projective modules

N. P. Puspita, I. E. Wijayanti, B. Surodjo

Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta, Indonesia

Аннотация: Let $R$ be a commutative ring with multiplicative identity and $P$ is a finitely generated projective $R$-module. If $P^{\ast}$ is the set of $R$-module homomorphism from $P$ to $R$, then the tensor product $P^{\ast}\otimes_{R}P$ can be considered as an $R$-coalgebra. Furthermore, $P$ and $P^{\ast}$ is a comodule over coalgebra $P^{\ast}\otimes_{R}P$. Using the Morita context, this paper give sufficient conditions of clean coalgebra $P^{\ast}\otimes_{R}P$ and clean $P^{\ast}\otimes_{R}P$-comodule $P$ and $P^{\ast}$. These sufficient conditions are determined by the conditions of module $P$ and ring $R$.

Ключевые слова: clean coalgebra, clean comodule, finitely generated projective module, Morita context.

MSC: 16T15, 16D90, 16D40

Поступила в редакцию: 10.07.2019
Исправленный вариант: 23.10.2020

Язык публикации: английский

DOI: 10.12958/adm1415



© МИАН, 2024