RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2021, том 31, выпуск 2, страницы 286–301 (Mi adm801)

Эта публикация цитируется в 2 статьях

RESEARCH ARTICLE

Semisymmetric $Z_{p}$-covers of the $C20$ graph

A. A. Talebi, N. Mehdipoor

Faculty of Mathematics, University of Mazandaran, Iran

Аннотация: A graph $ X$ is said to be $G$-semisymmetric if it is regular and there exists a subgroup $G$ of $A := \operatorname{Aut}(X)$ acting transitively on its edge set but not on its vertex set. In the case of $G = A$, we call $ X$ a semisymmetric graph. Finding elementary abelian covering projections can be grasped combinatorially via a linear representation of automorphisms acting on the first homology group of the graph. The method essentially reduces to finding invariant subspaces of matrix groups over prime fields. In this study, by applying concept linear algebra, we classify the connected semisymmetric $z_{p}$-covers of the $C20$ graph.

Ключевые слова: invariant subspaces, homology group, $C20$ graph, semisymmetric graphs, regular covering, lifting automorphisms.

MSC: 05C25, 20B25

Поступила в редакцию: 12.07.2016

Язык публикации: английский

DOI: 10.12958/adm252



© МИАН, 2024