RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2021, том 32, выпуск 1, страницы 1–8 (Mi adm803)

RESEARCH ARTICLE

About the spectra of a real nonnegative matrix and its signings

K. Attas, A. Boussaїri, M. Zaidi

Laboratoire de Topologie, Algèbre, Géométrie et Mathématiques Discrètes, Faculté des Sciences Aїn Chock, Hassan II University of Casablanca, Casablanca, Morocco

Аннотация: For a complex matrix $M$, we denote by $\operatorname{Sp}(M)$ the spectrum of $M$ and by $|M|$ its absolute value, that is the matrix obtained from $M$ by replacing each entry of $M$ by its absolute value. Let $A$ be a nonnegative real matrix, we call a signing of $A$ every real matrix $B$ such that $|B|=A$. In this paper, we characterize the set of all signings of $A$ such that $\operatorname{Sp}(B)=\alpha \operatorname{Sp}(A)$ where $\alpha$ is a complex unit number. Our motivation comes from some recent results about the relationship between the spectrum of a graph and the skew spectra of its orientations.

Ключевые слова: spectra, digraphs, nonnegative matrices, irreducible matrices.

MSC: 05C20, 05C50

Поступила в редакцию: 17.09.2019

Язык публикации: английский

DOI: 10.12958/adm1461



© МИАН, 2024