RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2012, том 14, выпуск 1, страницы 145–160 (Mi adm89)

Эта публикация цитируется в 1 статье

RESEARCH ARTICLE

Expansions of numbers in positive Lüroth series and their applications to metric, probabilistic and fractal theories of numbers

Yulia Zhykharyeva, Mykola Pratsiovytyi

Physics and Mathematics Institute, Dragomanov National Pedagogical University, Pyrogova St. 9, 01601 Kyiv, Ukraine

Аннотация: We describe the geometry of representation of numbers belonging to $(0,1]$ by the positive Lüroth series, i.e., special series whose terms are reciprocal of positive integers. We establish the geometrical meaning of digits, give properties of cylinders, semicylinders and tail sets, metric relations; prove topological, metric and fractal properties of sets of numbers with restrictions on use of “digits”; show that for determination of Hausdorff–Besicovitch dimension of Borel set it is enough to use connected unions of cylindrical sets of the same rank. Some applications of $L$-representation to probabilistic theory of numbers are also considered.

Ключевые слова: Lüroth series, $L$-representation, cylinder, semicylinder, shift operator, random variable defined by $L$-representation, fractal, Hausdorff–Besicovitch dimension.

MSC: 11K55

Поступила в редакцию: 02.07.2012
Принята в печать: 02.07.2012

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024