RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2012, том 14, выпуск 2, страницы 230–235 (Mi adm95)

RESEARCH ARTICLE

Reduction of matrices over Bezout domains of stable range 1 with Dubrovin's condition in which maximal nonprincipal ideals are two-sides

Tetyana Kysila, Bogdan Zabavskiyb, Olga Domshab

a Khmelnitsky National University, The faculty of Applied Mathematics and Computer Technologies, Applied Mathematics and Social Informatics Department
b Lviv national university named after I. Franko, The faculty of Mechanics and Mathematics, The chair of Algebra and Logic

Аннотация: It is proved that each matrix over Bezout domain of stable range $1$ with Dubrovin's condition, in which every maximal nonprincipal ideals are tho-sides ideals, is equivalent to diagonal one with right total division of diagonal elements.

Ключевые слова: Bezout domain, domain of stable range 1, Dubrovin's condition, maximal nonprincipal ideal, right total division.

Поступила в редакцию: 21.04.2012
Исправленный вариант: 19.05.2012

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024