RUS  ENG
Полная версия
ЖУРНАЛЫ // Advances in Mathematics // Архив

Adv. Math., 2024, том 449, страницы 109720–35 (Mi admat28)

Эта публикация цитируется в 2 статьях

Chern–Dold character in complex cobordisms and theta divisors

V. M. Buchstabera, A. P. Veselovb

a Steklov Mathematical Institute and Moscow State University, Russia
b Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, UK

Аннотация: We show that the smooth theta divisors of general principally polarised abelian varieties can be chosen as irreducible algebraic representatives of the coefficients of the Chern-Dold character in complex cobordisms and describe the action of the Landweber-Novikov operations on them. We introduce a quantisation of the complex cobordism theory with the dual Landweber-Novikov algebra as the deformation parameter space and show that the Chern-Dold character can be interpreted as the composition of quantisation and dequantisation maps. Some smooth real-analytic representatives of the cobordism classes of theta divisors are described in terms of the classical Weierstrass elliptic functions. The link with the Milnor-Hirzebruch problem about possible characteristic numbers of irreducible algebraic varieties is discussed.

MSC: Primary 55N22; Secondary 14K12

Поступила в редакцию: 06.03.2023
Исправленный вариант: 13.03.2024
Принята в печать: 04.05.2024

Язык публикации: английский

DOI: 10.1016/j.aim.2024.109720


ArXiv: 2007.05782


© МИАН, 2024