RUS  ENG
Полная версия
ЖУРНАЛЫ // Annales de l'institut Henri Poincare (B) Probability and Statistics // Архив

Ann. Inst. H. Poincaré Probab. Statist., 2014, том 50, выпуск 2, страницы 602–627 (Mi aipps1)

Эта публикация цитируется в 25 статьях

Conditional limit theorems for intermediately subcritical branching processes in random environment

V. I. Afanasyeva, Ch. Böinghoffb, G. Kerstingb, V. A. Vatutina

a Department of Discrete Mathematics, Steklov Mathematical Institute, 8 Gubkin Street, 119 991 Moscow, Russia
b Fachbereich Mathematik, Universität Frankfurt, Fach 187, D-60054 Frankfurt am Main, Germany

Аннотация: For a branching process in random environment it is assumed that the offspring distribution of the individuals varies in a random fashion, independently from one generation to the other. For the subcritical regime a kind of phase transition appears. In this paper we study the intermediately subcritical case, which constitutes the borderline within this phase transition. We study the asymptotic behavior of the survival probability. Next the size of the population and the shape of the random environment conditioned on non-extinction is examined. Finally we show that conditioned on non-extinction periods of small and large population sizes alternate. This kind of ‘bottleneck’ behavior appears under the annealed approach only in the intermediately subcritical case.

MSC: Primary 60J80; Secondary 60K37; 60G50; 60F17

Поступила в редакцию: 13.01.2012
Исправленный вариант: 18.09.2012
Принята в печать: 24.09.2012

Язык публикации: английский

DOI: 10.1214/12-AIHP526



Реферативные базы данных:


© МИАН, 2024