Аннотация:
Шрейерово многообразие $V$ называется вполне шрейеровым, если $V$ — свободная алгебра $F_1(V)$ ранга $1$$V$ — свободно порождается любым своим элементом. Регулярно определимое многообразие $V$ унарных алгебр является вполне шрейеровым тогда и только тогда, когда отвечающая ему полугруппа $P_V$ есть группа. В регулярно определимом шрейеровом многообразии $V$ унарных алгебр свободные алгебры конечных рангов хопфовы тогда и только тогда, когда полугруппа $P_V$ удовлетворяет закону левого сокращения.