Аннотация:
По аналогии с $n$-лиевыми алгебрами, которые являются естественным обобщением алгебр Ли на случай $n$-арной операции умножения, определяется понятие $n$-арной алгебры Мальцева и показывается, что исключительные алгебры векторного произведения являются тернарными центральными простыми алгебрами Мальцева, которые не будут 3-лиевыми алгебрами, если характеристика основного поля отлична от 2 и 3. Основной результат: любая $n$-арная алгебра векторного произведения является $n$-арной центральной простой алгеброй Мальцева.