Аннотация:
Пусть $K$ – локальное поле нулевой характеристики. Приводится новое определение полуалгебраических множеств. Это понятие распространяется на подмножества $K$ – точек $K$-определенных алгебраических многообразий. Показывается, что оно служит аналогом конструктивного множества в случае алгебраически замкнутого поля $K$. Это следует из различных вариантов указанной в заголовке теоремы о полуалгебраичности проекции полуалгебраического множества. Одна из таких формулировок
Теорема 3. Пусть $\mathcal{N}$ – квазипроективное алгебраическое $K$-многообразие, а $p\colon\mathcal{N}\to\mathcal{M}$ – регулярное $K$-рациональное отображение $\mathcal{N}$ в проективное $K$-многообразие $\mathcal{M}$. Тогда образ $\mathcal{N}(K)$ при этом отображении образует полуалгебраическое множество в $\mathcal{M}(K)$.
Показывается, что, используя результаты X. Хиронаки о разрешимости особенностей, можно доказать теорему $3$ независимо.