RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и логика // Архив

Алгебра и логика, 1997, том 36, номер 4, страницы 363–386 (Mi al2398)

Алгебраические точечные решетки квазимногообразий

К. В. Адаричеваa, В. А. Горбуновa, В. Дзёбякb

a Институт математики СО РАН, г. Новосибирск
b Университет Пуэрто-Рико, факультет математики, США

Аннотация: Доказывается истинность гипотезы Горбунова–Туманова о строении решеток квазимногообразий в случае алгебраических решеток. А именно, для алгебраической точечной решетки $L$ показывается равносильность следующих условий: (1) $L$ представима в виде $L_q(\mathcal{K})$ для некоторого квазимногообразия $\mathcal{K}$; (2) $L$ представима в виде $S_\wedge(A)$ для некоторой алгебраической решетки $A$, удовлетворяющей условию минимальности и почти удовлетворяющей условию максимальности; (3) $L$ – коалгебраическая решетка, допускающая оператор эквазамыкания.

УДК: 512.567.5

Поступило: 26.01.1996
Окончательный вариант: 01.02.1997



Реферативные базы данных:


© МИАН, 2024