RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и логика // Архив

Алгебра и логика, 2015, том 54, номер 2, страницы 212–235 (Mi al688)

Эта публикация цитируется в 2 статьях

О сохранении категоричности и сложности отношений

Дж. Джонсонa, Дж. Ф. Найтb, В. Окасиоc, Д. Тусуповd, С. ВанДенДришеe

a Dept. of Math., Westfield State Univ., 577 Western Ave, Westfield, MA 01086-1630, USA
b Dep. Math., Univ. Notre Dame, 255 Hurley, Notre Dame, IN, 46556, USA
c Dept. of Math. Sci., Univ. of Puerto Rico, PO Box 9000, Mayaguez, PR 00681-9000, USA
d Евразийский нац. ун-т им. Л. Н. Гумилева, ул. Сатпаева, 2, г. Астана, КАЗАХСТАН
e First Source Bank, South Bend, Indiana, USA

Аннотация: В [Алгебра и логика, 16, № 3 (1977), 257–282; Ann. Pure Appl. Logic, 136, No. 3 (2005), 219–246; J. Symb. Log., 74, No. 3 (2009), 1047–1060] доказано, что для любого вычислимого ординала $\alpha$ существует структура, являющаяся $\Delta^0_\alpha$-категоричной, но не относительно $\Delta^0_\alpha$-категоричной. Первые примеры структур с таким свойством не принадлежали естественным алгебраическим классам. В [Ann. Pure Appl. Logic, 115, Nos. 1–3 (2002), 71–113] для $\alpha=1$ построены новые примеры структур с таким свойством, принадлежащие естественным классам, в том числе кольца и $2$-ступенно нильпотентные группы. Аналогичные примеры для всех вычислимых ординалов-последователей построены в [Алгебра и логика, 46, № 4 (2007), 514–524]. Эти исследования продолжаются для случая вычислимых предельных ординалов. Известен пример алгебраического поля, являющегося вычислимо категоричным, но не относительно вычислимо категоричным. Здесь показывается, что для любого вычислимого предельного ординала $\alpha>\omega$ существует поле, являющееся $\Delta^0_\alpha$-категоричным, но не относительно $\Delta^0_\alpha$-категоричным. Приводятся примеры, связанные с размерностью и сложностью отношений.

Ключевые слова: $\Delta^0_\alpha$-категоричная структура, структура, не являющаяся относительно $\Delta^0_\alpha$-категоричной, поле.

УДК: 510.5

Поступило: 13.03.2015

DOI: 10.17377/alglog.2015.54.205


 Англоязычная версия: Algebra and Logic, 2015, 54:2, 140–154

Реферативные базы данных:


© МИАН, 2024