Аннотация:
Рассматривается класс аппроксимационных пространств, порождённых допустимыми множествами и, в частности, наследственно конечными надстройками над структурами. Обобщённая вычислимость на аппроксимационных пространствах понимается как эффективная определимость в динамической логике. Аналогично понятию структуры, $\Sigma$-определимой
в допустимом множестве, вводится понятие эффективной определимости структуры на аппроксимационном пространстве. Аналогично тому, как определяется отношение $\Sigma$-сводимости, естественным образом возникает отношение сводимости на структурах, порождающее соответствующие полурешётки степеней структур (произвольной мощности), а также операция скачка. Устанавливается естественное вложение в эти полурешётки полурешётки гиперстепеней множеств натуральных чисел, сохраняющее операцию гиперскачка. Даётся синтаксическое описание структур, имеющих гиперстепень.