RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и логика // Архив

Алгебра и логика, 2016, том 55, номер 6, страницы 769–799 (Mi al774)

Эта публикация цитируется в 3 статьях

Обобщённо гиперарифметическая вычислимость над структурами

А. И. Стукачевab

a Ин-т матем. им. С. Л. Соболева СО РАН, пр. Ак. Коптюга, 4, г. Новосибирск, 630090, РОССИЯ
b Новосибирский гос. ун-т, ул. Пирогова, 2, г. Новосибирск, 630090, РОССИЯ

Аннотация: Рассматривается класс аппроксимационных пространств, порождённых допустимыми множествами и, в частности, наследственно конечными надстройками над структурами. Обобщённая вычислимость на аппроксимационных пространствах понимается как эффективная определимость в динамической логике. Аналогично понятию структуры, $\Sigma$-определимой в допустимом множестве, вводится понятие эффективной определимости структуры на аппроксимационном пространстве. Аналогично тому, как определяется отношение $\Sigma$-сводимости, естественным образом возникает отношение сводимости на структурах, порождающее соответствующие полурешётки степеней структур (произвольной мощности), а также операция скачка. Устанавливается естественное вложение в эти полурешётки полурешётки гиперстепеней множеств натуральных чисел, сохраняющее операцию гиперскачка. Даётся синтаксическое описание структур, имеющих гиперстепень.

Ключевые слова: теория вычислимости, допустимые множества, аппроксимационные пространства, конструктивные модели, вычислимый анализ, гиперарифметическая вычислимость.

УДК: 510.5

Поступило: 13.04.2015
Окончательный вариант: 07.11.2016

DOI: 10.17377/alglog.2016.55.606


 Англоязычная версия: Algebra and Logic, 2017, 55:6, 507–526

Реферативные базы данных:


© МИАН, 2024