Аннотация:
Статья посвящена решению задачи оптимального в среднеквадратичском смысле стохастического восстановления квадратично интегрируемой относительно меры Лебега функции, заданной на конечномерном компакте. В ней обосновывается процедура оптимального восстановления вышеуказанной функции, которая наблюдается в каждой точке этого компакта с гауссовскими ошибками. Здесь приводятся условия существования оптимальной процедуры стохастического восстановления, а также ее свойства несмещенности и состоятельности. Кроме того, предложена и обоснована процедура почти оптимального стохастического восстановления, которая позволяет: i) оценить зависимость среднеквадратического отклонения от количества ортогональных функций и числа наблюдений, ii) найти такое количество ортогональных функций, которое минимизирует это среднеквадратическое отклонение.