RUS  ENG
Полная версия
ЖУРНАЛЫ // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Архив

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2006, номер 3, страницы 3–16 (Mi basm104)

Эта публикация цитируется в 2 статьях

Lie algebras of operators and invariant $GL(2,\mathbb{R})$-integrals for Darboux type differential systems

O. V. Diaconescu, M. N. Popa

Institute of Mathematics and Computer Sciences, Academy of Sciences of Moldova, Chisinau, Moldova

Аннотация: In this article two-dimensional autonomous Darboux type differential systems with nonlinearities of the $i^{th} (i=\overline{2,7})$ degree with respect to the phase variables are considered. For every such system the admitted Lie algebra is constructed. With the aid of these algebras particular invariant $GL(2,\mathbb{R})$-integrals as well as first integrals of considered systems are constructed. These integrals represent the algebraic curves of the $(i-1)^{th}(i=\overline{2,7})$ degree. It is showed that the Darboux type systems with nonlinearities of the $2^{nd}$, the $4^{th}$ and the $6^{th}$ degree with respect to the phase variables do not have limit cycles.

Ключевые слова и фразы: Darboux type differential system, comitant, invariant $GL(2,\mathbb{R})$-integrating factor, invariant $GL(2,\mathbb{R})$-integral, limit cycle.

MSC: 34C05, 34C14

Поступила в редакцию: 21.08.2006

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024