RUS  ENG
Полная версия
ЖУРНАЛЫ // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Архив

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2005, номер 3, страницы 141–152 (Mi basm143)

On Commutativity and Mediality of Polyagroup Cross Isomorphs

F. M. Sokhatsky, O. V. Yurevych

Vinnytsia University, Vinnytsia, Ukraine

Аннотация: The notion of isotopy (cross isomorphism) of $n$-ary operations can be got from the well-known notion of isotopy (isomorphism) by replacing one of its components with a $k$-ary $m$-invertible operation [1, 2]. The idea of consideration of cross isotopy belongs to V. D. Belousov [3], who defined it for binary quasigroups.
In the paper necessary and sufficient conditions for commutativity and mediality of a polyagroup cross isomorph (when $n>2k$) are determined. A neutrality criterion of an arbitrary element is stated.

Ключевые слова и фразы: $n$-ary quasigroup, cross isomorphism, cross isotopy, $(i,j)$-associative operation.

MSC: 20N15

Поступила в редакцию: 13.12.2005

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024