RUS  ENG
Полная версия
ЖУРНАЛЫ // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Архив

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2018, номер 1, страницы 92–119 (Mi basm469)

Distances on free semigroups and their applications

M. M. Chobana, I. A. Budanaevb

a Tiraspol State University, Republic of Moldova, str. Iablochkin 5, Chisinau, Moldova
b Institute of Mathematics and Computer Sciences of ASM, str. Academiei, 3/2, MD-2028, Chisinau, Moldova

Аннотация: In this article it is proved that for any quasimetric $d$ on a set $X$ with a base-point $p_X$ there exists a maximal invariant extension $\hat\rho$ on the free monoid $F^a(X,\mathcal V)$ in a non-Burnside quasi-variety $\mathcal V$ of topological monoids (Theorem 6.1). This fact permits to prove that for any non-Burnside quasi-variety $\mathcal V$ of topological monoids and any $T_0$-space $X$ the free topological monoid $F(X,\mathcal V)$ exists and is abstract free (Theorem 7.1). Corollary 10.2 affirms that $F(X,\mathcal V)$, where $\mathcal V$ is a non-trivial complete non-Burnside quasi-variety of topological monoids, is a topological digital space if and only if $X$ is a topological digital space.

Ключевые слова и фразы: quasi-variety of topological monoids, free monoid, invariant distance, quasimetric.

MSC: 20M05, 20M07, 32F45, 522A15, 4E25, 54E35, 54H15, 20F10

Поступила в редакцию: 11.03.2018

Язык публикации: английский



© МИАН, 2024