RUS  ENG
Полная версия
ЖУРНАЛЫ // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Архив

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2019, номер 1, страницы 71–78 (Mi basm493)

Эта публикация цитируется в 4 статьях

Finite non-commutative associative algebras for setting the hidden discrete logarithm problem and post-quantum cryptoschemes on its base

N. A. Moldovyan

St. Petersburg Institute for Informatics and Automation of Russian Academy of Sciences, 14-th line 39, 199178, St. Petersburg, Russia

Аннотация: The paper considers finite non-commutative associative algebras every of which contains a large set of the global one-sided (right and left) units. Formulas describing all of the global units are derived for each of the algebras. Finite algebras of such type are introduced as carriers of the hidden discrete logarithm problem that is defined in three new forms. One of them is used to design the post-quantum cryptoscheme for public key-distribution. Two others are applied to design the post-quantum digital signature schemes.

Ключевые слова и фразы: finite associative algebra, non-commutative algebra, right unit, set of global units, discrete logarithm problem, digital signature, post-quantum cryptography.

MSC: 94A60, 16Z05, 14G50, 11T71, 16S50

Поступила в редакцию: 05.09.2018

Язык публикации: английский



© МИАН, 2024