RUS  ENG
Полная версия
ЖУРНАЛЫ // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Архив

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2019, номер 2, страницы 99–112 (Mi basm503)

On the upper bound of the number of functionally independent focal quantities of the Lyapunov differential system

Mihail Popa, Victor Pricop

Vladimir Andrunachievici Institute of Mathematics and Computer Science, 5, Academiei street, Chişinău, Republic of Moldova, MD 2028

Аннотация: Denote by $N_1=2\sum\limits_{i=1}^{\ell}(m_i+1)+2$ the maximal possible number of non-zero coefficients of the Lyapunov differential system $\dot{x}= y+\sum\limits_{i=1}^{\ell}P_{m_i}(x,y)$, $\dot{y}= -x+\sum\limits_{i=1}^{\ell}Q_{m_i}(x,y)$, where $P_{m_i}$ and $Q_{m_i}$ are homogeneous polynomials of degree $m_i$ with respect to $x$ and $y$, and $1<m_1<m_2<...<m_{\ell}$ $(\ell<\infty)$. Then the upper bound of functionally independent focal quantities in the center and focus problem of considered system does not exceed $N_1-1$.

Ключевые слова и фразы: Lyapunov differential systems, the center and focus problem, focal quantities, rotation group, Lie operators, comitants and invariants.

MSC: 34C07, 34C14, 34C20

Поступила в редакцию: 12.08.2019

Язык публикации: английский



© МИАН, 2024