RUS  ENG
Полная версия
ЖУРНАЛЫ // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Архив

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2019, номер 2, страницы 13–40 (Mi basm505)

Эта публикация цитируется в 1 статье

The problem of the center for cubic differential systems with the line at infinity and an affine real invariant straight line of total algebraic multiplicity five

Alexandru Şubăa, Silvia Turutab

a Vladimir Andrunachievici Institute of Mathematics and Computer Science, 5 Academiei str., Chişinău, MD 2028, Moldova
b Tiraspol State University, 5 Gh. Iablocichin str., Chişinău, MD-2069, Moldova

Аннотация: In this article, we study the real planar cubic differential systems with a non-degenerate monodromic critical point $M_0.$ In the cases when the algebraic multiplicity $m(Z)= 5$ or $m(l_1)+m(Z)\ge 5,$ where $Z=0$ is the line at infinity and $l_1=0$ is an affine real invariant straight line, we prove that the critical point $M_0$ is of the center type if and only if the first Lyapunov quantity vanishes. More over, if $m(Z)=5$ (respectively, $m(l_1)+m(Z)\ge 5,~ m(l_1)\ge j,~ j=2,3 $) then $M_0$ is a center if the cubic systems have a polynomial first integral (respectively, an integrating factor of the form $1/l_1^j$).

Ключевые слова и фразы: cubic differential system, center problem, invariant straight line, algebraic multiplicity.

MSC: 34C05

Поступила в редакцию: 18.03.2019

Язык публикации: английский



© МИАН, 2024