RUS  ENG
Полная версия
ЖУРНАЛЫ // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Архив

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2019, номер 2, страницы 79–98 (Mi basm512)

Эта публикация цитируется в 1 статье

The classification of a family of cubic differential systems in terms of configurations of invariant lines of the type $(3,3)$

Cristina Bujac

Vladimir Andrunachievici Institute of Mathematics and Computer Science

Аннотация: In this article we consider the class of non-degenerate real planar cubic vector fields, which possess two real and two complex distinct infinite singularities and invariant straight lines, including the line at infinity, of total multiplicity $7$. In addition, the systems from this class possess configurations of the type $(3,3)$. We prove that there are exactly $16$ distinct configurations of invariant straight lines for this class and present corresponding examples for the realization of each one of the detected configurations.

Ключевые слова и фразы: cubic differential system, invariant straight line, multiplicity of invariant lines, infinite and finite singularities, affine invariant polynomial, group action, configuration of invariant lines, multiplicity of singularity.

MSC: 58K45, 34C05, 34A34

Поступила в редакцию: 10.08.2019

Язык публикации: английский



© МИАН, 2025