Аннотация:
If a countable skew field $ R $ admits a non-discrete metrizable topology $ \tau _0 $, then the lattice of all topologies of this skew fields admits:
– Continuum of non-discrete metrizable topologies of the skew fields stronger than the topology $ \tau _0 $ and such that $ \sup \{\tau _1, \tau _2 \} $ is the discrete topology for any different topologies $ \tau_1$ and $\tau _2 $;
– Continuum of non-discrete metrizable topologies of the skew fields stronger than $ \tau _0 $ and such that any two of these topologies are comparable;
– Two to the power of continuum of topologies of the skew fields stronger than $ \tau _0 $, each of them is a coatom in the lattice of all topologies of the skew fields.
Ключевые слова и фразы:countable skew fields, topological skew fields, Hausdorff topology, basis of the filter of neighborhoods, number of topologies on countable skew fields, lattice of topologies on skew fields.