RUS  ENG
Полная версия
ЖУРНАЛЫ // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Архив

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2008, номер 1, страницы 125–130 (Mi basm6)

Orthogonal Solutions for a Hyperbolic System

Ovidiu Cârjăab, Mihai Neculaa, Ioan I. Vrabieab

a Faculty of Mathematics, "Al. I. Cuza" University Iaşi, Romania
b "Octav Mayer" Mathematics Institute, Romanian Academy Iaşi, Romania

Аннотация: We consider the hyperbolic system
$$ \begin{cases} u_t=a\nabla v+f_1(u,н)\\ v_t=a\nabla u+f_2(u,н)\\ u(0,x)=\xi(x)\\ v(0,x)=\eta(x), \end{cases} $$
and we are looking for necessary and sufficient conditions on the forcing terms $f_i$, $i=1,2$, in order that the semigroup solutions, $u$ and $н$, starting from orthogonal data $\xi,\eta\in L^2(\mathbb R^n)$, remain orthogonal on $\mathbb R_+$.

Ключевые слова и фразы: First-order hyperbolic systems, orthogonal solutions, viability, tangency condition.

MSC: 35L45, 47D03, 47J35

Поступила в редакцию: 03.12.2007

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024