Аннотация:
We consider the hyperbolic system
$$
\begin{cases}
u_t=a\nabla v+f_1(u,н)\\
v_t=a\nabla u+f_2(u,н)\\
u(0,x)=\xi(x)\\
v(0,x)=\eta(x),
\end{cases}
$$
and we are looking for necessary and sufficient conditions on the forcing terms $f_i$, $i=1,2$, in order that the semigroup solutions, $u$ and $н$, starting from orthogonal data $\xi,\eta\in L^2(\mathbb R^n)$, remain orthogonal on $\mathbb R_+$.
Ключевые слова и фразы:First-order hyperbolic systems, orthogonal solutions, viability, tangency condition.