Аннотация:
Both “existential” and “equational” definitions of binary quasigroups and groupoids closely connected with quasigroups are given. It is proved that a groupoid $(Q,\cdot)$ is a quasigroup if and only if all middle translations of $(Q,\cdot)$ are bijective maps of the set $Q$.
Ключевые слова и фразы:
Quasigroup, left quasigroup, right quasigroup, division groupoid, cancellation groupoid, translation.