Аннотация:
Представлен оригинальный метод поиска связи хода эпидемии с социально-экономическими, демографическими и климатическими факторами. В рамках предложенного метода проведена иерархическая агломеративная кластеризация 110 стран мира по кривым темпа роста COVID-19 за период с января 2020 по август 2021 г. Выделены четыре крупных кластера с единообразными кривыми, включающих 11, 39, 17 и 13 стран соответственно. Еще 30 стран не вошли ни в один из кластеров. Методами машинного обучения в выделенных кластерах выявлены различия социально-экономических, демографических и географо-климатических показателей. Наиболее важными показателями, по которым кластеры отличаются друг от друга, стали амплитуда температур в течение года, индекс чистых бартерных условий торговли, рост населения, средняя температура января, территория (площадь суши), количество погибших в результате стихийных бедствий, коэффициент рождаемости, длина береговой линии, запасы нефти, доля населения в городских агломерациях с численностью населения более 1 млн человек и др. Данный подход (применение кластеризации в сочетании с классификацией методами логико-статистического анализа) ранее никем не использовался. Найденные закономерности позволят более точно проводить прогнозирование эпидемиологического процесса в странах, принадлежащих к разным кластерам. Дополнение представленного подхода авторегрессионными моделями позволит автоматизировать прогноз и повысить его точность.
Ключевые слова:кластерный анализ; методы машинного обучения; статистика; эпидемиологический процесс; COVID-19.
УДК:
004.4
Поступила в редакцию: 31.12.2021 Исправленный вариант: 04.03.2022 Принята в печать: 04.03.2022