Аннотация:
Рассматривается задача оптимизации переходного процесса в квазилинейной динамической системе (содержит малый параметр при нелинейностях) с критерием качества, представляющим собой линейную комбинацию энергетических затрат и длительности процесса. Предлагается алгоритм построения асимптотических приближений заданного порядка к решению этой задачи. Суть данного алгоритма заключается в асимптотическом разложении по целым степеням малого параметра начальных значений сопряженных переменных и длительности процесса – конечномерных элементов, по которым легко восстанавливается решение задачи. Вычислительная процедура алгоритма сводится к решению задачи оптимизации переходного процесса в линейной динамической системе, интегрированию систем линейных дифференциальных уравнений, а также нахождению корней невырожденных линейных алгебраических систем. Также показывается, как можно использовать полученные асимптотические
приближения для построения оптимального управления в рассматриваемой задаче при заданном значении малого параметра.