RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал Белорусского государственного университета. Математика. Информатика // Архив

Журн. Белорус. гос. ун-та. Матем. Инф., 2023, том 1, страницы 38–48 (Mi bgumi406)

Теоретическая и прикладная механика

Распространение поверхностной волны около случайно-шероховатой поверхности

А. В. Чигарев, М. Г. Ботогова, Г. И. Михасёв

Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

Аннотация: Рассматривается обобщение задачи о распространении поверхностной упругой волны Рэлея около свободной поверхности, получаемой математическим деформированием свободной плоскости. Множество возможных реализаций поверхности в среднем эквивалентно плоскости, а дисперсия является постоянной величиной. Предполагается малость безразмерного параметра – градиента к поверхности, что обусловливает наличие малых флуктуаций у всех полевых величин. Определяются эффективные граничные условия на эффективной плоской границе. Из условия существования ненулевых решений задачи о собственных колебаниях полупространства с неровной границей выводится обобщенное уравнение Рэлея, содержащее дополнительный параметр безразмерной дисперсии градиента к поверхности. Численно находятся корни уравнения в зависимости от коэффициента Пуассона и дисперсии. Влияние дисперсии градиента к неровной поверхности проявляется в трансформации нулевого корня в ненулевой при условии, что отношение скорости рэлеевской волны к скорости поперечной волны меньше единицы. Второму корню, получаемому из нулевого, соответствует появление более медленной, чем рэлеевская, волны, амплитуда которой также уменьшается с глубиной. Физически допустимые решения могут существовать только для величины дисперсии градиента меньше 0,09 в диапазоне изменения свойств материалов от твердых до резиноподобных.

Ключевые слова: упругая волна Рэлея; дисперсия неровности поверхности; малый безразмерный параметр.

УДК: 539.3:534

Поступила в редакцию: 02.02.2022
Исправленный вариант: 23.05.2022
Принята в печать: 17.01.2023

DOI: 10.33581/2520-6508-2023-1-38-48



© МИАН, 2024