RUS  ENG
Полная версия
ЖУРНАЛЫ // Чебышевский сборник // Архив

Чебышевский сб., 2021, том 22, выпуск 2, страницы 417–436 (Mi cheb1043)

ИСТОРИЯ МАТЕМАТИКИ И ПРИЛОЖЕНИЙ

Из истории понятия структурной устойчивости

Р. Р. Мухин

Старооскольский технологический университет им. А. А. Угарова (филиал) Национального исследовательского технологического университета «МИСиС» (г. Старый Оскол)

Аннотация: Цель. Целью работы является изучение истории представлений о грубости (структурной устойчивости), которая является не только одним из важнейших понятий теории нелинейных систем, но лежит в основе нашего миропонимания. До настоящего времени структурная устойчивость рассматривалась в историческом плане лишь фрагментарно (главным образом, в связи со школой Андронова) и не являлась предметом последовательного исторического исследования. Метод. Исследование основано на анализе оригинальных работ, историко-научной литературы с привлечением воспоминаний участников описываемых событий. Результаты. В школе Андронова в контексте прикладных проблем исчерпывающим образом были изучены двумерные системы, для которых структурная устойчивость является типичным свойством. С конца 1950-х гг. происходит смещение исследований структурной устойчивости в контексте прикладных проблем в сторону теории динамических систем. М. Пейксото изучил структурную устойчивость на замкнутых двумерных многообразиях и доказал плотность таких систем. С. Смейл выдвинул гипотезу о существовании структурно устойчивых систем в многомерном случае ($n\geqslant3$). Такие системы существуют (системы Морса-Смейла), но он сам установил их нетипичность, они не составляют плотного множества. Для многомерных систем характерно сложное поведение, был построен пример такой системы (подкова Смейла). Изучение систем со сложным поведением стимулировало развитие гиперболической теории. Обсуждение. Структурная устойчивость явилась важным фактором открытия сложного поведения динамических систем уже в трехмерном случае, она продолжает играть значительную роль в современной теории динамических систем. Структурная устойчивость имеет общенаучное значение, сыграла ключевую роль в построении теории катастроф, она вышла за рамки теории динамических систем и самой математики, проникает в другие области науки, в том числе в гуманитарную сферу.

Ключевые слова: динамическая система, грубость, структурная устойчивость, топологическая эквивалентность, типичность, трансверсальность, плотное множество.

УДК: 51(09)

DOI: 10.22405/2226-8383-2018-22-2-417-436



© МИАН, 2024