Аннотация:
В работе рассмотрены предпосылки и зарождение теории нелинейных интегральных уравнений. Появление этой теории явилось закономерным следствием развития всей математики XVIII-XIX вв. Вместе с тем сильное мотивирующее воздействие оказало возрастание интереса к нелинейным задачам в конце XIX – начале XX в. Непосредственное исследование конкретных нелинейных интегральных уравнений было вызвано актуальной прикладной задачей о фигурах равновесия вращающихся жидких масс, которая, начиная с Ньютона, привлекала внимание значительного числа крупнейших математиков. В первые десятилетия развития теории нелинейных интегральных уравнений культивировались традиционные подходы, использовавшиеся для исследования дифференциальных и алгебраических уравнений, по схеме уравнение-решение. То есть на первом плане находилось вычисление и оценка его точности. Сложность и своеобразие нелинейных задач сразу выявили актуальность вопросов существования и единственности их решений, что сделало необходимым привлечение других, только создающихся областей математики. Теория интегральных уравнений вообще явилась одним из истоков функционального анализа. Кроме того, обе теории тесно переплетались и в своей эволюции взаимно стимулировали друг друга. В полной мере это относится и к нелинейным интегральным уравнениям, для которых первостепенное значение приобрели качественные методы. На рассматриваемом в настоящей работе этапе имело место параллельное развитие и cмешение традиционных методов исследования уравнений и новых подходов качественного характера. На следующем этапе новые подходы вышли на первый план, объединившись с функциональным анализом и топологией.