RUS  ENG
Полная версия
ЖУРНАЛЫ // Чебышевский сборник // Архив

Чебышевский сб., 2021, том 22, выпуск 5, страницы 161–171 (Mi cheb1124)

Эта публикация цитируется в 1 статье

Об одной экстремальной задаче для положительно определённых функций

А. Д. Манов

Донецкий национальный университет (г. Донецк)

Аннотация: В данной работе рассматривается экстремальная задача, связанная с множеством непрерывных положительно определённых функций на $\mathbb{R}$, носитель которых содержится в отрезке $[-\sigma,\sigma]$, $\sigma>0$, а значение в нуле фиксировано (класс $\mathfrak{F}_\sigma$).
Мы рассматриваем следующую задачу. Пусть $\mu$ – линейный локально ограниченный функционал на множестве финитных непрерывных функций $C_c(\mathbb{R})$, принимающий вещественные значения на множествах $\mathfrak{F}_\sigma$, $\sigma>0$. При фиксированном $\sigma>0$ требуется найти следующие величины:
$$ M(\mu,\sigma):=\sup\left\{ \mu(\varphi): \varphi\in\mathfrak{F}_\sigma\right\},\ m(\mu,\sigma):=\inf\left\{ \mu(\varphi): \varphi\in\mathfrak{F}_\sigma\right\}. $$
Нами получено общее решение данной задачи для линейных функционалов следующего вида $\mu(\varphi)=\int_\mathbb{R}\varphi(x)\rho(x)dx$, $\varphi\in C_c(\mathbb{R})$, где $\rho\in L_{loc}(\mathbb{R})$ и $\rho(x)=\overline{\rho(-x)}$ для п. в. $x\in\mathbb{R}$. Если $\rho(x)\equiv1$, то величина $M(\mu,\sigma)$ была найдена Зигелем в 1935 году и независимо Боасом и Кацом в 1945 году. В данной работе найдены явные решения рассматриваемой задачи в следующих случаях: $\rho(x)=ix$, $\rho(x)=x^2$ и $\rho(x)=i\mathop{\rm sign} x$, $x\in\mathbb{R}$.
Кроме того, в данной работе изучается связь между рассматриваемой задачей и точечными неравенствами для производных целых функций экспоненциального типа $\leqslant\sigma$, сужения на $\mathbb{R}$ которых принадлежат $L_1(\mathbb{R})$. В частности, получены точные неравенства для первой и второй производных таких функций.

Ключевые слова: положительно определенные функции, экстремальные задачи, теорема Бохнера, преобразование Фурье, целые функции экспоненциального типа.

УДК: 517.5+519.213

Поступила в редакцию: 17.06.2021
Принята в печать: 21.12.2021

DOI: 10.22405/2226-8383-2021-22-5-161-171



© МИАН, 2024