Аннотация:
В статье рассматривается задача об отражении и прохождении гармонической цилиндрической звуковой волны через однородную изотропную упругую пластину с непрерывно-неоднородным по толщине упругим покрытием. Полагается, что пластина помещена в безграничную идеальную жидкость, законы неоднородности материала покрытия описываются непрерывными функциями. Аналитическое решение поставленной задачи получено на основе известного решения задачи о прохождения плоских звуковых волн через пластину с непрерывно-неоднородным покрытием и с использованием интегрального представления цилиндрической волны в виде разложения по плоским волнам. Нахождение поля смещений в неоднородном слое сведено к решению краевой задаче для системы обыкновенных дифференциальных уравнений второго порядка. Представлены результаты численных расчетов частотных характеристик отраженного и прошедшего акустических полей. Показано сильное отличие частотных зависимостей для разных законов неоднородности материала покрытия.