Эта публикация цитируется в
5 статьях
Симметризованные многочлены в задаче оценки меры иррациональности числа $\ln 3$
И. В. Бондареваab,
М. Ю. Лучинa,
В. Х. Салиховa a Брянский государственный технический университет
b ООО "АйТи Про"
Аннотация:
Оценка меры иррациональности различных трансцендентных чисел является одним из основыных направлений теории диофантовых приближений.
В настоящее время разработан целый ряд методов, позволяющих получать подобные оценки для значений аналитических функций. Наиболее эффективным оказался метод, связанный с построением различных интегральных конструкций; одним из первых подобных построений является классическое интугральное представление гипергеометрической функции Гаусса.
Оценки снизу меры иррациональности логарифмов рациональных чисел рассматривались многими зарубежными авторами: А. Бейкер и Д. Вустольц [4], А. Хеймонен, Т. Матала-ахо, К. Ваананен [5], К. Ву [6], Д. Рин и П. Тоффин [7]. В своих работах они применяли различные интегральные конструкции, дающие малые линейные формы от логарифмов и других чисел, вычисляли асимптотику интегралов и коэффициентов линейных форм с помощью метода перевала, теоремы Лапласа, оценивали знаменатель коэффициентов линейных форм с использованием различных схем "сокращения простых чисел". Обзор некоторых методов из теории диофантовых приближений логарифмов рациональных чисел того времени был представлен в 2004 году в статье В. В. Зудилина [8].
Затем В. Х. Салихов в работе [3], основываясь на тех же асимптотических методах, но использовав новый вид интегральной конструкции, обладающей свойством симметрии, значительно улучшил оценку меры иррациональности числа
$\ln 3$. Впоследствии В. Х. Салихову, благодаря использованию уже комплексного симметризованного интеграла, удалось улучшить оценку меры иррациональности числа
$\pi$ [15]. В дальнейшем данный метод (применительно к диофантовым приближениям логарифмов рациональных чисел) получил развитие в работах его учеников: Е. С. Золотухиной [10, 11], М. Ю. Лучина [12, 13], Е. Б. Томашевской [14]. Это привело к улучшению оценок мер иррациональности целого ряда чисел:
$\mu(\log(5/3))\leqslant5.512\dots$ [14],
$\mu(\log(8/5))<5.9897$ [12],
$\mu(\log(7/5))\leqslant4.865\dots$ [14],
$\mu(\log(9/7))\leqslant3.6455\dots$ [10],
$\mu(\log(7/4))<8.1004$ [13].
С помощью интегральной конструкции, основанной на симметризованных многочленах, получена новая оценка меры иррациональности числа
$\ln 3$. Предыдущий результат принадлежал К. Ву и Л. Вангу и был установлен в 2014 г.
Улучшение оценки связано с добавлением к симметризованным многочленам, использованным в интегральной конструкции К. Ву и Л. Ванга, специального квадратного симметризованного многочлена.
Ключевые слова:
диофантовы приближения, мера иррациональности, симметризованные многочлены.
УДК:
511.36
DOI:
10.22405/2226-8383-2018-19-1-15-25