Аннотация:
За последние десятилетия значительное развитие получила теория функционально-дифференциалных включений, прежде всего, функционально-дифференциальное включе-ние запаздывающего типа. Ученые разных стран ведут исследования в области теории начально-краевых задач для различных классов дифференциальных, интегро-дифференциальных и функционально-дифференциальных включений в частных производных с целым и дробным порядками производных. Настоящая работа посвящена дробным функционально-диференциальным и интегродифференциальным включениям типа Хейла занимающие промежуточное место между функционально-дифференциальными включениями с запаздыванием и включениями нейтрального типа. Установлены достаточные условия существования слабых решений включений типа Хейла с дробным порядком производной. Методы дробного интегро-дифференциального исчисления и теории непод-вижных точек многозначных отображений лежат в основе настоящего исследования. Известно, что динамика экономических, социальных и экологических макросистем представляет собой многозначный динамический процесс и дифференциальные и интегро-дифференциальные включения дробного порядка являются естественными моделями динамики макросистем. Такие включения используются также для описания некоторых физических и механических систем с гистерезисом. В конце работы приводится пример иллюстрирующий абстрактные результаты.