Аннотация:
Изучение действий алгебраических групп на алгебраических многообразиях и их координатных алгебрах является важной областью исследований в алгебраической геометрии и теории колец. Эта область связана с теорией полиномиальных отображений, ручных и диких автоморфизмов, проблемой якобиана, теорией бесконечномерных многообразий по Шафаревичу, проблемой сокращения (вместе с другими подобными вопросами), теорией локально нильпотентных дифференцирований. Одной из центральных задач теории действий алгебраических групп является проблема линеаризации, изученная в работе Т. Камбаяши и П. Расселла, утверждающая, что всякое действие тора на аффинном пространстве линейно в некоторой системе координат. Гипотеза о линеаризации была основана на хорошо известной классической теореме А. Бялыницкого — Бирули, которая гласит, что всякое эффективное регулярное действие тора максимальной размерности на аффинном пространстве над алгебраически замкнутым полем допускает линеаризацию.
Несмотря на то что гипотеза о линеаризации оказалась отрицательной в ее общем виде — контрпримеры в положительной характеристике были построены Т. Асанума — теорема Бялыницкого — Бирули остается важным результатом теории благодаря ее связи с теорией полиномиальных автоморфизмов. Недавние продвижения в последней мотивировали поиск различных некоммутативных разновидностей теоремы Бялыницкого — Бирули. В данной статье мы приведем доказательство теоремы о линеаризации эффективного действия максимального тора автоморфизмами свободной ассоциативной алгебры, являющейся таким образом свободным аналогом теоремы Бялыницкого — Бирули.
Ключевые слова:действия тора, задача линеаризации, полиномиальные автоморфизмы.