RUS  ENG
Полная версия
ЖУРНАЛЫ // Чебышевский сборник // Архив

Чебышевский сб., 2020, том 21, выпуск 1, страницы 51–61 (Mi cheb860)

Noncommutative Białynicki–Birula theorem

[Некоммутативная теорема Бялыницкого — Бирули]

A. Ya. Belov-Kanela, A. M. Elishevb, F. Razaviniabc, Yu Jie-Taia, Wenchao Zhangd

a College of Mathematics and Statistics, Shenzhen University (Shenzhen)
b Moscow Institute of Physics and Technology (Moscow)
c Department of Mathematics, University of Porto, Praça de Gomes Teixeira (Porto)
d Mathematics Department, Bar-Ilan University (Ramat-Gan)

Аннотация: Изучение действий алгебраических групп на алгебраических многообразиях и их координатных алгебрах является важной областью исследований в алгебраической геометрии и теории колец. Эта область связана с теорией полиномиальных отображений, ручных и диких автоморфизмов, проблемой якобиана, теорией бесконечномерных многообразий по Шафаревичу, проблемой сокращения (вместе с другими подобными вопросами), теорией локально нильпотентных дифференцирований. Одной из центральных задач теории действий алгебраических групп является проблема линеаризации, изученная в работе Т. Камбаяши и П. Расселла, утверждающая, что всякое действие тора на аффинном пространстве линейно в некоторой системе координат. Гипотеза о линеаризации была основана на хорошо известной классической теореме А. Бялыницкого — Бирули, которая гласит, что всякое эффективное регулярное действие тора максимальной размерности на аффинном пространстве над алгебраически замкнутым полем допускает линеаризацию.
Несмотря на то что гипотеза о линеаризации оказалась отрицательной в ее общем виде — контрпримеры в положительной характеристике были построены Т. Асанума — теорема Бялыницкого — Бирули остается важным результатом теории благодаря ее связи с теорией полиномиальных автоморфизмов. Недавние продвижения в последней мотивировали поиск различных некоммутативных разновидностей теоремы Бялыницкого — Бирули. В данной статье мы приведем доказательство теоремы о линеаризации эффективного действия максимального тора автоморфизмами свободной ассоциативной алгебры, являющейся таким образом свободным аналогом теоремы Бялыницкого — Бирули.

Ключевые слова: действия тора, задача линеаризации, полиномиальные автоморфизмы.

УДК: 512.7

Язык публикации: английский

DOI: 10.22405/2226-8383-2018-21-1-51-61



© МИАН, 2024