Аннотация:
Работа посвящена определению диапазона значений сеточного числа Пекле, при котором предложенная схема, представляющая линейную комбинацию схем «кабаре» и «крест» с весовыми коэффициентами, полученными из условия минимизации порядка погрешности аппроксимации, обладает лучшей точностью по сравнению с употребительными схемами, в том числе модификациями схемы «кабаре» с ограничителями. В статье получено ограничение на шаг по времени для разностной схемы с весами при котором погрешность расчетов находится в приемлемом диапазоне. Показано, что предложенная схема, построенная на основе линейной комбинации разностной схемы «кабаре» и «крест» с весовыми коэффициентами $2/3$ и $1/3$ соответственно, полученными в результате минимизации погрешности аппроксимации точнее схемы «кабаре» с ограничителями решает задачу конвекции при малых числах Куранта. Рассчитан диапазон чисел Пекле, при котором предложенная аппроксимация оператора конвективного переноса будет эффективна. На основании вышесказанного сделаны выводы о том, что предложенная модификация схемы «кабаре» для численного решения задачи диффузии-конвекции обладает лучшей точностью по сравнению с другими схемами, для значений сеточного числа Пекле в диапазоне $2\le Pe\le 20$, что позволяет применять данный класс схем для численного решения задач вычислительной океанологии.