Аннотация:
Начиная с основополагающей заметки, опубликованной М. Сомосом в 1989 году, большое внимание специалистов по теории чисел и смежных областей привлекают нелинейные последовательности, удовлетворяющие квадратичному рекуррентному соотношению. При этом особое внимание уделяется вопросам построения целочисленных последовательностей Сомоса и их лорановости относительно начальных значений и коэффициентов рекуррентного соотношения. В фундаментальных работах Робинсона, Фомина и Зелевинского была доказана лорановость последовательности Сомос-$k$ при $k=4,5,6,7$. В работах Хона были найдены представления для числовых последовательностей Сомос-$4$, $5$ через сигма-функцию Вейерштрасса на эллиптических кривых, а при $k=6$ — через значения сигма-функции Клейна на гиперэллиптических кривых рода $2$. Следует также отметить, что последовательности Сомоса естественным образом возникают при построении криптосистем на эллиптических и гиперэллиптических кривых над конечным полем. Это объясняется тем, что для вышеупомянутых последовательностей выполняются теоремы сложения, и они естественным образом возникают при вычислении кратных точек на эллиптических и гиперэллиптических кривых. При $k=4,5,6,7$ последовательности Сомоса представляют собой полиномы Лорана от $k$ начальных переменных и обычные полиномы от коэффициентов рекуррентного соотношения. Поэтому эти полиномы Лорана можно записать в виде несократимой дроби с обычным полиномом в числителе с начальными значениями и коэффициентами в качестве переменных. При этом знаменатель записывается в виде монома от начальных переменных. С помощью тропических функций мы доказываем, что степени переменных вышеупомянутого монома представляются в виде квадратичных полиномов от порядкового номера элемента последовательности Сомоса, у которых свободные члены представляют собой периодические последовательности рациональных чисел. При этом в каждом случае в явном виде указываются соответствующие полиномы и периоды их свободных членов.