Аннотация:
Сложность в применении дифференциальных задач на практике заключается в основном в невозможности получения их решений в аналитическом виде, что делает актуальным разработку численных методов. В данной работе построена одна неявная разностная схема, аппроксимирующая краевую задачу гиперболического типа с однородными граничными условиями. Найден порядок аппроксимации разностной схемы. Особое внимание уделено доказательству устойчивости и сходимости. При доказательстве использован подход, аналогичный методу разделения переменных в математической физике. Автором найдено условие сходимости, накладываемое на параметры разностной схемы. Проведён численный эксперимент. Разработана программа, позволяющая находить и визуализировать приближённое решение.