Аннотация:
Рассматривается математическая модель (так называемая система бегущих волн), описывающая продольные динамические эффекты в полупроводниковых лазерах. Данная модель состоит из линейной гиперболической системы уравнений в частных производных и
медленной системы обыкновенных дифференциальных уравнений. Доказывается, что соответствующая начально-краевая задача корректна и при этом порождает гладкую бесконечномерную динамическую систему. Используя особую медленно-быструю структуру,
мы получаем условия, при которых существует экспоненциально притягивающее инвариантное многообразие малой размерности. Поток на этом инвариантном многообразии описывается системой обыкновенных дифференциальных уравнений. Изучаются приближенные режимы указанной системы методами теории бифуркаций, а также
численно.