Аннотация:
В настоящем обзоре приводятся результаты последних лет по решению проблемы Ж. Палиса о нахождении необходимых и достаточных условий включения каскада Морса—Смейла в топологический поток. На сегодняшний день проблема решена Палисом для диффеоморфизмов Морса—Смейла, заданных на многообразиях размерности два. Результат для окружности является тривиальным упражнением. В размерности три и выше возникают новые эффекты, связанные с возможностью дикого вложения замыканий инвариантных многообразий седловых периодических точек, что приводит к дополнительным препятствиям включения диффеоморфизмов Морса—Смейла в топологический поток. Прогресс, достигнутый в решении проблемы Палиса в размерности три, связан с относительно недавним получением полной топологической классификации диффеоморфизмов Морса—Смейла на трехмерных многообразиях и введением новых инвариантов, описывающих вложение сепаратрис седловых периодических точек в несущее многообразие. Переход к более высокой размерности требует привлечения новейших результатов топологии многообразий. Необходимые сведения из топологии, играющие ключевые роли в доказательствах, также излагаются в обзоре.