RUS  ENG
Полная версия
ЖУРНАЛЫ // Современная математика. Фундаментальные направления // Архив

СМФН, 2020, том 66, выпуск 2, страницы 292–313 (Mi cmfd404)

Эта публикация цитируется в 1 статье

К теории энтропийных решений нелинейных вырождающихся параболических уравнений

Е. Ю. Пановab

a Новгородский государственный университет, Великий Новгород, Россия
b Российский университет дружбы народов, Москва, Россия

Аннотация: Рассматривается нелинейное вырождающееся параболического уравнение второго порядка в случае, когда вектор потока и нестрого возрастающая функция диффузии лишь непрерывны. При нулевой диффузии это уравнение вырождается в квазилинейное уравнение первого порядка (закон сохранения). Известно, что в рассматриваемом общем случае энтропийное решение (в смысле Кружкова—Карильо) задачи Коши может быть неединственно. Поэтому актуально исследование специальных энтропийных решений задачи Коши и нахождение дополнительных условий на входные данные задачи, достаточных для единственности. В работе получен ряд новых результатов в этом направлении. Именно, доказано существование наибольшего и наименьшего энтропийного решения задачи Коши. С помощью этого результата установлена единственность энтропийного решения с периодическими начальными данными. Более обще, доказан принцип сравнения для энтропийных суб- и суперрешений в случае, когда хотя бы одна из начальных функций является периодической. Полученные результаты обобщают на параболический случай результаты, известные для законов сохранения.

УДК: 517.957

DOI: 10.22363/2413-3639-2020-66-2-292-313



© МИАН, 2024