Аннотация:
В статье рассматривается проблема диагностики заболеваний органов дыхания. Авторы выбрали в качестве возможного направления решения поставленной задачи нейросетевую сверточною модель, разработали и показали ее возможную архитектуру. Также в работе показано, какие этапы предобработки данных необходимо произвести для наилучшего результата обучения модели. Диагностику заболеваний дыхательных путей авторы предлагают проводить при помощи анализа характеристик аудиозаписей дыхания человека. Подобные аудиозаписи уже производятся, что позволило использовать для обучения сети набор данных, находящийся в свободном доступе в сети Интернет. Работа содержит перечень характеристик аудиозаписей дыхания, которые можно использовать для анализа и постановки предварительного диагноза. Немаловажная часть работы - анализ существующих современных научных подходов, позволяющих так или иначе упростить работу медицинского персонала и помочь сохранить здоровье пациента. Приведенные результаты обучения нейросетевой модели показывают, какие заболевания можно с большой уверенностью диагностировать автоматически, а какие более трудно определить и требуют дополнительных исследований.