Comp. nanotechnol.,
2025, том 12, выпуск 2,страницы 75–81(Mi cn558)
КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ И АВТОМАТИЗАЦИЯ ПРОЕКТИРОВАНИЯ
Алгоритмические методы событийно-прогнозного управления качеством сложных систем обработки данных: интеграция системного анализа и вычислительного моделирования
Аннотация:
Целью исследования является разработка алгоритмического комплекса событийно-прогнозного управления качеством сложных систем обработки данных (ССОД) через интеграцию методов системного анализа и вычислительного моделирования. Современные подходы к оценке качества, основанные на статических метриках ГОСТ Р 59797–2021, не учитывают динамические эмерджентные свойства и прогнозные сценарии функционирования ССОД. [4: 51]. В работе предложена гибридная модель, сочетающая многоуровневый системный анализ с L-устойчивыми методами численного моделирования, что позволило формализовать «событийно-прогнозный уровень качества» как функцию временных параметров системы. Разработанный алгоритмический комплекс включает трехуровневую архитектуру агрегирования данных с адаптивными весовыми коэффициентами, динамическую систему управления качеством, интегрированную в жизненный цикл ССОД, нейросетевой модуль превентивной оптимизации на базе обучения с подкреплением. Экспериментальная апробация на 15 промышленных ССОД продемонстрировала повышение точности прогнозирования критических событий до 89,7% и сокращение времени реакции системы с 15,3 до 2,7 с. Внедрение решения в контур управления нефтеперерабатывающим предприятием позволило снизить энергоемкость операций на 33% и увеличить межсервисный интервал на 27%. Оригинальность работы заключается в синтезе методов реляционного анализа с нейросетевыми архитектурами глубокого обучения, принципов управления качеством ISO 25010 с прогнозной аналитикой жестких систем, динамической адаптации параметров в реальном времени через модифицированный (2,1)-метод. Практическая значимость подтверждена интеграцией алгоритма в этапы проектирования, тестирования и эксплуатации ССОД, что соответствует требованиям ГОСТ Р 59797–2021. Результаты исследования могут быть применены при создании отказоустойчивых систем управления для критически важных объектов в энергетике, телекоммуникациях и финансовом секторе. Перспективы работы связаны с адаптацией алгоритма для квантовых вычислительных систем и распределенных IoT-архитектур.
Ключевые слова:
сложные системы обработки данных, событийно-прогнозное управление качеством, системный анализ, вычислительное моделирование, нейросетевые алгоритмы, динамическая адаптация, ГОСТ Р 59797–2021, ISO/IEC 25000, эмерджентные свойства, жизненный цикл системы.