Аннотация:
В статье рассматривается применение методов машинного обучения для прогнозирования выхода концентрата кремниевой руды. Проблема контроля содержания кремнезема является существенной для горнодобывающей промышленности, так как от этого зависит качество конечного продукта и его себестоимость [9; 10]. В процессе исследования данные, полученные с флотационной фабрики после проведения их предварительной обработки, были использованы на предмет выделения наиболее динамично изменяющихся факторов (показателей флотации). Были обучены модели случайного леса и рекуррентной сверточной нейронной сети LSTM с разным набором входных признаков. Оценка качества используемых моделей производилась с помощью метрик среднеквадратичной ошибки (MSE), средней абсолютной ошибки (MAE) и коэффициента детерминации (R-squared). В результате экспериментов было установлено, что моментальные показатели флотации в меньшей степени влияют на улучшение качества прогноза, а уникальные переменные, взятые с различным лагом, приводят к повышению точности. Результаты исследования могут быть использованы на предприятиях, занимающихся переработкой кремниевой руды, для более полной автоматизации и оптимизации процессов управления флотацией.
Ключевые слова:
обогащение руды, анализ данных, машинное обучение, нейронные сети.