RUS  ENG
Полная версия
ЖУРНАЛЫ // Компьютерная оптика // Архив

Компьютерная оптика, 2022, том 46, выпуск 4, страницы 650–658 (Mi co1057)

Эта публикация цитируется в 5 статьях

ЧИСЛЕННЫЕ МЕТОДЫ И АНАЛИЗ ДАННЫХ

Численные методы анализа многокомпонентных газовых смесей с помощью инфракрасной лазерной спектроскопии

И. С. Голяк, Е. Р. Карева, И. Л. Фуфурин, Д. Р. Анфимов, А. В. Щербакова

Московский государственный технический университет имени Н. Э. Баумана

Аннотация: В настоящей работе рассматривается применение машинного и глубокого обучения в спектральном анализе многокомпонентных газовых смесей. Экспериментальная установка состоит из квантово-каскадного лазера с диапазоном перестройки 5,3 – 12,8 мкм пиковой мощностью до 150 мВт и астигматической газовой ячейки Эрриотта с длиной оптического пути до 76 м. В качестве тестовых веществ использовались ацетон, этанол, метанол и их смеси. Для обнаружения и кластеризации веществ, в том числе молекул-биомаркеров, предложены методы машинного обучения, такие как стохастическое вложение соседей с t-распределением, метод главных компонент и методы классификации, такие как случайный лес, градиентный бустинг и логистическая регрессия. Для спектрального анализа газовых смесей использована неглубокая свёрточная нейронная сеть на базе TensorFlow (Google) и Keras. В качестве обучающей выборки использовались модельные спектры веществ, а в качестве тестовой – модельные и экспериментальные. Показано, что нейронные сети, обученные на модельных спектрах (база данных NIST), могут распознавать вещества в экспериментальных газовых смесях. Предложено использовать нейронные сети для идентификации газовых смесей как единого целого. На экспериментальной установке зарегистрированы следующие минимальные концентрации: 80 ppb для ацетона и 100 – 120 ppb для этанола и метанола. Показана возможность применения предложенных методов для анализа спектров выдыхаемого человеком воздуха.

Ключевые слова: газовый анализ, спектральный анализ, биофотоника, инфракрасная спектроскопия, квантово-каскадный лазер, биомаркер, машинное обучение, глубокое обучение

Поступила в редакцию: 20.09.2021
Принята в печать: 30.10.2021

DOI: 10.18287/2412-6179-CO-1058



© МИАН, 2024