Аннотация:
В работе исследовано изменение точности классификации спутниковых изображений при различных комбинациях параметров нейронной сети и набора входных данных. Проведено добавление к обучающей выборке индекса NDVI и локальных бинарных шаблонов. Выполнено тестирование классификаторов, созданных на разных количествах эпох и образцах. Определены значения гиперпараметров нейронной сети, позволяющие достичь точности классификации 0,70 и F-меры 0,65. Разделение классов с похожими спектральными характеристиками показывает низкое качество при различных параметрах и наборах входных данных. Для улучшения требуется привлечение дополнительной информации. Например, для разделения лесов на подклассы необходимо применение классификаторов, использующих изображения за разные периоды года, учитывающих вегетационный период. Кроме того, необходимо расширение обучающей выборки для учета различных природных зон, почв и т.д.